Reaktoro  v2.11.0
A unified framework for modeling chemically reactive systems
EquationModel Struct Reference

The necessary constants \(\epsilon\), \(\sigma\), \(\Omega\), \(\Psi\) and function \(\alpha(T_r;\omega)\) that uniquely define a cubic equation of state. More...

#include <CubicEOS.hpp>

Collaboration diagram for EquationModel:
[legend]

Public Attributes

real epsilon
 The constant \(\epsilon\) in the cubic equation of state.
 
real sigma
 The constant \(\sigma\) in the cubic equation of state.
 
real Omega
 The constant \(\Omega\) in the cubic equation of state.
 
real Psi
 The constant \(\Psi\) in the cubic equation of state.
 
AlphaModel alphafn
 The function \(\alpha(T_r;\omega)\) in the cubic equation of state.
 

Detailed Description

The necessary constants \(\epsilon\), \(\sigma\), \(\Omega\), \(\Psi\) and function \(\alpha(T_r;\omega)\) that uniquely define a cubic equation of state.

We consider the following general form for a cubic equation of state [10]:

\[P=\frac{RT}{V-b}-\frac{a(T)}{(V+\epsilon b)(V+\sigma b)}\]

where:

\[b=\sum_{i}x_{i}b_{i},\]

\[a=\sum_{i}\sum_{j}x_{i}x_{j}a_{ij},\]

\[a_{ij}=(1-k_{ij})(a_{i}a_{j})^{1/2},\]

\[b_{k}=\Omega\frac{RT_{\mathrm{cr},k}}{P_{\mathrm{cr},k}},\]

\[a_{k}(T)=\Psi\frac{\alpha(T_{r,k};\omega_{k})R^{2}T_{\mathrm{cr},k}^{2}}{P_{\mathrm{cr},k}}.\]

From theq equations above, one note that a cubic equation of state can be uniquely defined by constants \(\epsilon\), \(\sigma\), \(\Omega\), and \(\Psi\) and function \(\alpha(T_r;\omega)\). The table below shows how these constants and function can be defined to represent classic cubic equations of state:

EOS \(\alpha(T_{r};\omega)\) \(\sigma\) \(\epsilon\) \(\Omega\) \(\Psi\)
van der Waals (1873) 1 0 0 1/8 27/64
Redlich-Kwong (1949)[9] \(T_{r}^{-1/2}\) 1 0 0.08664 0.42748
Soave-Redlich-Kwong (1972) \([1+m_\mathrm{SRK}(1-\sqrt{T_{r}})]^{2}\) 1 0 0.08664 0.42748
Peng-Robinson (1976)[8] \([1+m_\mathrm{PR76}(1-\sqrt{T_{r}})]^{2}\) \(1+\sqrt{2}\) \(1-\sqrt{2}\) 0.07780 0.45724
Peng-Robinson (1978)[4] \([1+m_\mathrm{PR78}(1-\sqrt{T_{r}})]^{2}\) \(1+\sqrt{2}\) \(1-\sqrt{2}\) 0.07780 0.45724

where

\[\begin{align*}m_{\mathrm{SRK}} & =0.480+1.574\omega-0.176\omega^{2}\\m_{\mathrm{PR76}} & =0.37464+1.54226\omega-0.26992\omega^{2}\vphantom{\begin{cases}\omega^2\\\omega^3\end{cases}}\\m_{\mathrm{PR78}} & =\begin{cases}0.37464+1.54226\omega-0.26992\omega^{2} & \omega\leq0.491\\0.379642+1.48503\omega-0.164423\omega^{2}+0.016666\omega^{3} & \omega>0.491\end{cases}\end{align*}\]


The documentation for this struct was generated from the following file: