Loading [MathJax]/extensions/TeX/mhchem.js
Reaktoro
A unified framework for modeling chemically reactive systems

The class that implements an optimization algorithm based on Karpov's method. More...

#include <OptimumSolverKarpov.hpp>

Inheritance diagram for OptimumSolverKarpov:
[legend]
Collaboration diagram for OptimumSolverKarpov:
[legend]

Public Member Functions

 OptimumSolverKarpov ()
Construct a default OptimumSolverKarpov instance.
 
 OptimumSolverKarpov (const OptimumSolverKarpov &other)
Construct a copy of an OptimumSolverKarpov instance.
 
virtual ~OptimumSolverKarpov ()
Destroy this OptimumSolverKarpov instance.
 
auto operator= (OptimumSolverKarpov other) -> OptimumSolverKarpov &
Assign a copy of an OptimumSolverKarpov instance.
 
virtual auto solve (const OptimumProblem &problem, OptimumState &state) -> OptimumResult
Solve the linear optimisation problem by finding a feasible point and then applying a simplex algorithm. More...
 
virtual auto solve (const OptimumProblem &problem, OptimumState &state, const OptimumOptions &options) -> OptimumResult
Solve the linear optimisation problem by finding a feasible point and then applying a simplex algorithm. More...
 
virtual auto dxdp (VectorConstRef dgdp, VectorConstRef dbdp) -> Vector
Return the sensitivity dx/dp of the solution x with respect to a vector of parameters p. More...
 
virtual auto clone () const -> OptimumSolverBase *
Return a clone of this instance.
 
- Public Member Functions inherited from OptimumSolverBase
virtual ~OptimumSolverBase ()=0
Pure virtual destructor.
 

Detailed Description

The class that implements an optimization algorithm based on Karpov's method.

Member Function Documentation

◆ solve() [1/2]

auto solve(const OptimumProblemproblem, OptimumStatestate) -> OptimumResult
virtual

Solve the linear optimisation problem by finding a feasible point and then applying a simplex algorithm.

Parameters
problemThe definition of the linear optimisation problem
state[in,out]The initial guess and the final state of the optimisation approximation

Implements OptimumSolverBase.

◆ solve() [2/2]

auto solve(const OptimumProblemproblem, OptimumStatestate, const OptimumOptionsoptions) -> OptimumResult
virtual

Solve the linear optimisation problem by finding a feasible point and then applying a simplex algorithm.

Parameters
problemThe definition of the linear optimisation problem
state[in,out]The initial guess and the final state of the optimisation approximation
optionsThe options for the optimisation calculation

Implements OptimumSolverBase.

◆ dxdp()

auto dxdp(VectorConstRef dgdp, VectorConstRef dbdp) -> Vector
virtual

Return the sensitivity dx/dp of the solution x with respect to a vector of parameters p.

Parameters
dgdpThe derivatives dg/dp of the objective gradient grad(f) with respect to the parameters p
dbdpThe derivatives db/dp of the vector b with respect to the parameters p

Implements OptimumSolverBase.


The documentation for this class was generated from the following files: