Thermodynamic Databases¶
Thermodynamic databases allow us to define and model a chemically reactive system by providing the means for the computation of necessary thermodynamic properties (e.g., standard Gibbs energies of species, equilibrium constants of reactions). In such databases, we find a collection of chemical species and/or reactions and their accompanying data, which include substance’s name and chemical formula, reaction equations, thermodynamic data and/or model parameters.
Attention
There are many thermodynamic databases available in the literature and they are in general very different from each other. At the moment, there is no standard on how thermodynamic databases should be formatted. Some databases are based on chemical reactions and their equilibrium constants (e.g., PHREEQC databases), while others are based on substances and their model parameters for evaluation of their standard thermodynamic properties at temperature and pressure of interest (e.g., SUPCRT92 databases).
Reaktoro currently supports the following thermodynamic databases:
SUPCRT92 databases;
PHREEQC databases; and
GEMS databases.
SUPCRT92 Databases¶
The SUPCRT92 thermodynamic databases supported in Reaktoro are presented next. They contain parameters for the calculation of standard thermodynamic properties of aqueous species, gases, and minerals for temperatures 0-1000 °C and pressures 1-5000 bar. The standard properties of aqueous species are calculated using the revised Helgeson-Kirkham-Flowers (HKF) equations of state and, for the gases and minerals, a thermodynamic model based on Maier–Kelly heat capacity polynomial equation.
Note
The thermodynamic databases supcrt98.xml
and supcrt07.xml
, in XML
format, were derived, respectively, from the original SUPCRT92 database
files slop98.dat
and slop07.dat
. In the process, all organic aqueous species
were removed! If you need them in your modeling problem, you should then
use instead supcrt98-organics.xml
and supcrt07-organics.xml
.
Tip
If your problem requires an aqueous phase without organic species and you are using an automatic initialization scheme for its construction (e.g., creating an aqueous phase with all species in the database whose elements are H, O, C, or Ca), then make sure you are using one of the SUPCRT92 databases without organic species! Otherwise, you might end up with an aqueous phase containing an extremely long list of organic species that will only serve to decrease the performance of the calculations.
Note
The equation of state of Wagner and Pruss (2002) is used to calculate the thermodynamic properties of water and its temperature and pressure derivatives.
PHREEQC Databases¶
Reaktoro can use PHREEQC as a thermodynamic backend, which permits us to take advantage of the rich collection of PHREEQC thermodynamic databases that are listed next.
GEMS Databases¶
Reaktoro can also use GEMS as a thermodynamic backend and take advantage of its databases.
Todo
Write about GEMS databases.