OptimumProblem.hpp
Vector bi
The right-hand side vector of the linear equality constraint Ai*x = bi.
Definition: OptimumProblem.hpp:69
A type that describes the result of the evaluation of an objective function.
Definition: OptimumProblem.hpp:31
Matrix A
The coefficient matrix of the linear equality constraint A*x = b.
Definition: OptimumProblem.hpp:60
Vector grad
The gradient of the objective function evaluated at x.
Definition: OptimumProblem.hpp:36
A type that describes the non-linear constrained optimisation problem.
Definition: OptimumProblem.hpp:49
ObjectiveFunction objective
The objective function.
Definition: OptimumProblem.hpp:51
std::function< ObjectiveResult(VectorConstRef x)> ObjectiveFunction
A type that describes the functional signature of an objective function.
Definition: OptimumProblem.hpp:45
Vector b
The right-hand side vector of the linear equality constraint A*x = b.
Definition: OptimumProblem.hpp:63
Matrix Ai
The coefficient matrix of the linear inequality constraint Ai*x = bi.
Definition: OptimumProblem.hpp:66
The namespace containing all components of the Reaktoro library.
Definition: ChemicalScalar.hpp:24
Vector l
The lower bound of the primal variables x.
Definition: OptimumProblem.hpp:72
double val
The value of the objective function evaluated at x.
Definition: OptimumProblem.hpp:33
Vector c
The coefficient vector of a linear programming problem min tr(c)*x subject to A*x = b.
Definition: OptimumProblem.hpp:57
Hessian hessian
The Hessian of the objective function evaluated at x.
Definition: OptimumProblem.hpp:39
auto isfinite(const ObjectiveResult &f) -> bool
Returns true if the evaluation of a objective function has finite value and gradient.
Definition: OptimumProblem.cpp:22
Eigen::Ref< const Eigen::VectorXd > VectorConstRef
< Alias to Eigen type Ref<VectorXd>.
Definition: Matrix.hpp:31
Vector u
The upper bound of the primal variables x.
Definition: OptimumProblem.hpp:75